Solveeit Logo

Question

Physics Question on Gravitation

If a body of mass m has to be taken from the surface of earth to a height h=Rh = R, then the amount of energy required is (RR = radius of earth)

A

mgR

B

mgR3\frac{mgR}{3}

C

mgR2\frac{mgR}{2}

D

mgR12\frac{mgR}{12}

Answer

mgR2\frac{mgR}{2}

Explanation

Solution

We know that,
Gravitational potential energy
U=GMemR...(i)U=-\frac{G M_{e} m}{R}\,\,\,...(i)
and gravitational kinetic energy
K=12GMemR...(ii)K=\frac{1}{2} \cdot \frac{G M_{e} m}{R}\,\,\,...(ii)
\therefore Total energy of a body is
E=U+KE =U+K
=GMemR+GMem2R=-\frac{G M_{e} m}{R}+\frac{G M_{e} m}{2 R}
=2GMem+GMem2R=GMem2R=-\frac{2 G M_{e} m+G M_{e} m}{2 R}=-\frac{G M_{e} m}{2 R}
But, acceleration due to gravity (g)(g) in terms of aravitational constant (G)(G) is
g=GMeR2...(ii)g=\frac{G M_{e}}{R^{2}}\,\,\,...(ii)
GMeR2×R2×m2R\therefore -\frac{G M_{e}}{R^{2}} \times R^{2} \times \frac{m}{2 R}[From E (iii)]
=g×R2×m2R=g \times R^{2} \times \frac{m}{2 R}
(Cancelation of negative sign, because energy can never be negative)
=gmR2=mgR2=\frac{g m R}{2}=\frac{m g R}{2}