Question
Question: If A = $\begin{bmatrix} k & 5 & 2 \\ 2 & -k & 5 \\ 5 & 2 & -k \end{bmatrix}$ and det A = 190 then Ad...
If A = k255−k225−k and det A = 190 then Adj A =

−1311919−191931−11−19
Solution
Here's how to find the adjugate (adjoint) of matrix A:
-
Find the value of k:
-
Compute the determinant of A in terms of k: det(A)=k−k25−k−5255−k+225−k2.
-
Evaluate the 2x2 determinants:
- M11=−k25−k=(−k)(−k)−5⋅2=k2−10.
- M12=255−k=2(−k)−5⋅5=−2k−25.
- M13=25−k2=2⋅2−(−k)⋅5=4+5k.
-
Substitute back into the determinant: det(A)=k(k2−10)−5(−2k−25)+2(4+5k).
Simplify: det(A)=k3−10k+10k+125+8+10k=k3+10k+133.
-
Since det(A)=190, we have: k3+10k+133=190⟹k3+10k−57=0.
By trying k=3, we find that 33+10⋅3−57=27+30−57=0. Thus, k=3.
-
-
Write the matrix A with k=3:
A=3255−3225−3.
-
Find Adj A:
The adjugate of A is the transpose of the cofactor matrix. Compute the cofactors Cij=(−1)i+jMij:
-
First Row Cofactors:
- C11=det[−325−3]=(−3)(−3)−5⋅2=9−10=−1.
- C12=−det[255−3]=−(2(−3)−5⋅5)=−(−6−25)=31.
- C13=det[25−32]=2⋅2−(−3)⋅5=4+15=19.
-
Second Row Cofactors:
- C21=−det[522−3]=−(5(−3)−2⋅2)=−(−15−4)=19.
- C22=det[352−3]=3(−3)−2⋅5=−9−10=−19.
- C23=−det[3552]=−(3⋅2−5⋅5)=−(6−25)=19.
-
Third Row Cofactors:
- C31=det[5−325]=5⋅5−2(−3)=25+6=31.
- C32=−det[3225]=−(3⋅5−2⋅2)=−(15−4)=−11.
- C33=det[325−3]=3(−3)−5⋅2=−9−10=−19.
So the cofactor matrix is:
−1193131−19−111919−19.
Taking the transpose, we get:
AdjA=−1311919−191931−11−19.
-