Question
Question: If \(A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix},n \in N\), then \(A^{4n}\)equals...
If A=[i00i],n∈N, then A4nequals
A
[1001]
B
[i00i]
C
[0ii0]
D
[0000]
Answer
[1001]
Explanation
Solution
$A^{2} = \begin{bmatrix} i & 0 \ 0 & i \end{bmatrix}\begin{bmatrix} i & 0 \ 0 & i \end{bmatrix} = \begin{bmatrix}
- 1 & 0 \ 0 & - 1 \end{bmatrix},A^{4} = A^{2}.A^{2} = \begin{bmatrix}
- 1 & 0 \ 0 & - 1 \end{bmatrix}\begin{bmatrix}
- 1 & 0 \ 0 & - 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = I;(A^{4})^{n} = I^{n} = I = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$