Question
Question: If \(A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ - \sin\alpha & \cos\alpha \end{bmatrix},\text{t...
If $A = \begin{bmatrix} \cos\alpha & \sin\alpha \
- \sin\alpha & \cos\alpha \end{bmatrix},\text{then}A^{2} =$
A
[cos2αsin2αsin2αcos2α]
B
[cos2αsin2α−sin2αcos2α]
C
$\begin{bmatrix} \cos 2\alpha & \sin 2\alpha \
- \sin 2\alpha & \cos 2\alpha \end{bmatrix}$
D
$\begin{bmatrix}
- \cos 2\alpha & \sin 2\alpha \
- \sin 2\alpha & - \cos 2\alpha \end{bmatrix}$
Answer
$\begin{bmatrix} \cos 2\alpha & \sin 2\alpha \
- \sin 2\alpha & \cos 2\alpha \end{bmatrix}$
Explanation
Solution
Since A2=A⋅A=[cosα−sinαsinαcosα][cosα−sinαsinαcosα]
\cos 2\alpha & \sin 2\alpha \\ - \sin 2\alpha & \cos 2\alpha \end{bmatrix}$$