Solveeit Logo

Question

Question: If \(A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix},B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{b...

If A=[α011],B=[1051]A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix},B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}, then the value of α\alphafor which

A2=BA^{2} = B is

A

1

B

­ –1

C

4

D

No real values

Answer

No real values

Explanation

Solution

A2=[α011][α011]=[α20α+11]A^{2} = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^{2} & 0 \\ \alpha + 1 & 1 \end{bmatrix}A2=BA^{2} = B (given)

Then [α20α+11]=[1051]\begin{bmatrix} \alpha^{2} & 0 \\ \alpha + 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}α2=1\alpha^{2} = 1and α+1=5\alpha + 1 = 5.

Clearly no real value of α\alpha