Question
Question: If \(A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}\) and \(A^{2} = \begin{bmatrix} \alpha & \beta...
If A=[abba] and A2=[αββα]then
A
α=a2+b2,β=ab
B
α=a2+b2,β=2ab
C
α=a2+b2,β=a2−b2
D
α=2ab,β=a2+b2
Answer
α=a2+b2,β=2ab
Explanation
Solution
A2=[αββα]=[abba][abba] =[a2+b22ab2aba2+b2].
On comparing, we get, α=a2+b2,β=2ab