Solveeit Logo

Question

Question: If A = \(\begin{bmatrix} 4 & 2 \\ - 1 & 1 \end{bmatrix}\), then (A –2I) (A –3I) =...

If A = $\begin{bmatrix} 4 & 2 \

  • 1 & 1 \end{bmatrix}$, then (A –2I) (A –3I) =
A

A

B

I

C

0

D

5I

Answer

0

Explanation

Solution

$\left( \begin{bmatrix} 4 & 2 \

  • 1 & 1 \end{bmatrix} - 3\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \right)$

= [2211]\left[ \begin{array} { c c } 2 & 2 \\ - 1 & - 1 \end{array} \right] $\begin{bmatrix} 1 & 2 \

  • 1 & - 2 \end{bmatrix}== \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$= 0