Solveeit Logo

Question

Question: If $A = \begin{bmatrix} 2 & 2 \\ -3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bm...

If A=[2232]A = \begin{bmatrix} 2 & 2 \\ -3 & 2 \end{bmatrix}, B=[0110]B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} then (B1A1)1=(B^{-1}A^{-1})^{-1} =

A

[2223]\begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}

B

[2223]\begin{bmatrix} 2 & 2 \\ -2 & 3 \end{bmatrix}

C

[2322]\begin{bmatrix} 2 & -3 \\ 2 & 2 \end{bmatrix}

D

[1123]\begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}

Answer

[2223]\begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}

Explanation

Solution

To find (B1A1)1(B^{-1}A^{-1})^{-1}, we can use the property that (XY)1=Y1X1(XY)^{-1} = Y^{-1}X^{-1}. Therefore, (B1A1)1=(A1)1(B1)1(B^{-1}A^{-1})^{-1} = (A^{-1})^{-1}(B^{-1})^{-1}.

Also, (A1)1=A(A^{-1})^{-1} = A and (B1)1=B(B^{-1})^{-1} = B. Thus, (B1A1)1=AB(B^{-1}A^{-1})^{-1} = AB.

Now, we compute the matrix product ABAB:

AB=[2232][0110]=[(2)(0)+(2)(1)(2)(1)+(2)(0)(3)(0)+(2)(1)(3)(1)+(2)(0)]=[2223]AB = \begin{bmatrix} 2 & 2 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} (2)(0)+(2)(1) & (2)(-1)+(2)(0) \\ (-3)(0)+(2)(1) & (-3)(-1)+(2)(0) \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}.

Therefore, (B1A1)1=[2223](B^{-1}A^{-1})^{-1} = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}.