Solveeit Logo

Question

Question: If A = \(\begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{bmatrix}\), then adj. (adj. A) is ...

If A = [200220222]\begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{bmatrix}, then adj. (adj. A) is equal to

A

8 [100110111]\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}

B

64 [100110111]\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}

C

16 [100110111]\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}

D

None of these

Answer

16 [100110111]\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}

Explanation

Solution

adj (adj A) = |A|n–2 .A

|A| = 8

adj (adj A) = 83–2 .A = 8A

= [160016160161616]\begin{bmatrix} 16 & 0 & 0 \\ 16 & 16 & 0 \\ 16 & 16 & 16 \end{bmatrix} = 16[100110111]\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}