Question
Question: If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$, then find $A^{-1}$. U...
If A=231−3215−4−2, then find A−1. Using A−1, solve the system of equations: 2x−3y+5z=11 3x+2y−4z=−5 x+y−2z=−3

Answer
The inverse of the matrix A is:
A−1=0−2−1195−2−23−13The solution to the system of equations is:
x=1,y=2,z=3Explanation
Solution
- Calculate the determinant of A: det(A)=−1.
- Compute the adjugate matrix: adj(A)=021−1−9−522313.
- Find the inverse matrix: A−1=det(A)1adj(A)=0−2−1195−2−23−13.
- Represent the system in matrix form AX=B, where X=xyz and B=11−5−3.
- Solve for X using X=A−1B: X=0−2−1195−2−23−1311−5−3=123.
