Solveeit Logo

Question

Question: If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$, then find $A^{-1}$. U...

If A=[235324112]A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, then find A1A^{-1}. Using A1A^{-1}, solve the system of equations: 2x3y+5z=112x - 3y + 5z = 11 3x+2y4z=53x + 2y - 4z = -5 x+y2z=3x + y - 2z = -3

Answer

The inverse of the matrix AA is:

A1=[01229231513]A^{-1} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix}

The solution to the system of equations is:

x=1,y=2,z=3x=1, y=2, z=3
Explanation

Solution

  1. Calculate the determinant of AA: det(A)=1\det(A) = -1.
  2. Compute the adjugate matrix: adj(A)=[01229231513]\text{adj}(A) = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix}.
  3. Find the inverse matrix: A1=1det(A)adj(A)=[01229231513]A^{-1} = \frac{1}{\det(A)} \text{adj}(A) = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix}.
  4. Represent the system in matrix form AX=BAX = B, where X=[xyz]X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} and B=[1153]B = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}.
  5. Solve for XX using X=A1BX = A^{-1}B: X=[01229231513][1153]=[123]X = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.