Solveeit Logo

Question

Question: If $A = \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}$, then the value of $det(I+2A+3A^2+4A^3+5A^4+...

If A=[2142]A = \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}, then the value of det(I+2A+3A2+4A3+5A4+upto)det(I+2A+3A^2+4A^3+5A^4+\dots \text{upto} \infty) is

Answer

1

Explanation

Solution

The given series is S=I+2A+3A2+4A3+5A4+uptoS = I+2A+3A^2+4A^3+5A^4+\dots \text{upto} \infty. This is a matrix power series. We can relate it to a known scalar series. Consider the scalar geometric series: G(x)=1+x+x2+x3+=11xG(x) = 1 + x + x^2 + x^3 + \dots = \frac{1}{1-x} for x<1|x|<1. Differentiating G(x)G(x) with respect to xx: ddxG(x)=0+1+2x+3x2+=n=1nxn1\frac{d}{dx} G(x) = 0 + 1 + 2x + 3x^2 + \dots = \sum_{n=1}^{\infty} nx^{n-1}. Also, ddx(1x)1=1(1x)2(1)=(1x)2\frac{d}{dx} (1-x)^{-1} = -1(1-x)^{-2}(-1) = (1-x)^{-2}. Thus, the sum of the scalar series S(x)=1+2x+3x2+4x3+S(x) = 1+2x+3x^2+4x^3+\dots is (1x)2(1-x)^{-2} for x<1|x|<1.

Extending this to matrices, the sum of the matrix series S=I+2A+3A2+4A3+S = I+2A+3A^2+4A^3+\dots is (IA)2(I-A)^{-2}, provided the series converges. The convergence condition for such a series is that the spectral radius of matrix AA, denoted ρ(A)\rho(A), must be less than 1. The spectral radius is the maximum magnitude of the eigenvalues of AA.

Step 1: Find the eigenvalues of matrix A to check for convergence. Given A=[2142]A = \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}. The characteristic equation is det(AλI)=0det(A - \lambda I) = 0. det[2λ142λ]=0det \begin{bmatrix} 2-\lambda & -1 \\ 4 & -2-\lambda \end{bmatrix} = 0 (2λ)(2λ)(1)(4)=0(2-\lambda)(-2-\lambda) - (-1)(4) = 0 (4λ2)+4=0-(4-\lambda^2) + 4 = 0 4+λ2+4=0-4 + \lambda^2 + 4 = 0 λ2=0\lambda^2 = 0 The eigenvalues are λ1=0\lambda_1 = 0 and λ2=0\lambda_2 = 0. The spectral radius ρ(A)=max(λ1,λ2)=max(0,0)=0\rho(A) = \max(|\lambda_1|, |\lambda_2|) = \max(|0|, |0|) = 0. Since ρ(A)=0<1\rho(A) = 0 < 1, the series converges, and its sum is S=(IA)2S = (I-A)^{-2}.

Step 2: Calculate IAI-A. IA=[1001][2142]=[120(1)041(2)]=[1143]I-A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} = \begin{bmatrix} 1-2 & 0-(-1) \\ 0-4 & 1-(-2) \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -4 & 3 \end{bmatrix}.

Step 3: Calculate the determinant of IAI-A. det(IA)=(1)(3)(1)(4)=3(4)=3+4=1det(I-A) = (-1)(3) - (1)(-4) = -3 - (-4) = -3 + 4 = 1.

Step 4: Calculate the determinant of the series sum S=(IA)2S = (I-A)^{-2}. Using the properties of determinants: det(Mk)=(det(M))kdet(M^k) = (det(M))^k and det(M1)=1det(M)det(M^{-1}) = \frac{1}{det(M)}. Therefore, det(S)=det((IA)2)=(det((IA)1))2=(1det(IA))2det(S) = det((I-A)^{-2}) = (det((I-A)^{-1}))^2 = \left(\frac{1}{det(I-A)}\right)^2. Substitute the value of det(IA)det(I-A): det(S)=(11)2=12=1det(S) = \left(\frac{1}{1}\right)^2 = 1^2 = 1.

The final answer is 1.

Explanation of the solution:

  1. Recognize the given infinite series as S=n=1nAn1S = \sum_{n=1}^{\infty} n A^{n-1}.
  2. Recall that the scalar series 1+2x+3x2+1+2x+3x^2+\dots sums to (1x)2(1-x)^{-2} for x<1|x|<1.
  3. Extend this to matrices: S=(IA)2S = (I-A)^{-2}, provided the spectral radius ρ(A)<1\rho(A) < 1.
  4. Calculate the eigenvalues of AA: λ2=0    λ=0\lambda^2=0 \implies \lambda=0. So ρ(A)=0<1\rho(A)=0 < 1, confirming convergence.
  5. Calculate IA=[1143]I-A = \begin{bmatrix} -1 & 1 \\ -4 & 3 \end{bmatrix}.
  6. Calculate det(IA)=(1)(3)(1)(4)=1det(I-A) = (-1)(3) - (1)(-4) = 1.
  7. Use the determinant property det((IA)2)=(det(IA)1)2=(1det(IA))2det((I-A)^{-2}) = (det(I-A)^{-1})^2 = \left(\frac{1}{det(I-A)}\right)^2.
  8. Substitute det(IA)=1det(I-A)=1 to get det(S)=(11)2=1det(S) = \left(\frac{1}{1}\right)^2 = 1.