Question
Question: If A =\(\begin{bmatrix} 1 & \tan x \\ –\tan x & 1 \end{bmatrix}\) then ATA–1 =...
If A =[1–tanxtanx1] then ATA–1 =
A
[cos2xsin2x–sin2xcos2x]
B
[–cos2x–sin2xsin2xcos2x]
C
[sin2xcos2xcos2xsin2x]
D
None of these
Answer
[cos2xsin2x–sin2xcos2x]
Explanation
Solution
|A| =1–tanxtanx1 = 1 + tan2x ¹ 0.
So A is invertible. Let Cij be the cofactor of aij in A = [aij]
Then C11 = (–1)1 + 1 1 = 1,
C12 = (–1)1+2 (– tanx) = tanx
C21 = (–1)2+1 tanx = – tanx , C22 = (–1)2+2 . 1
\ adj A=[1–tanxtanx1]T= [1tanx–tanx1]
Now, A–1 = ∣A∣1 adj A
Ž A–1 = (1+tan2x)1 [1tanx–tanx1]
= [1+tan2x11+tan2xtanx1+tan2x−tanx1+tan2x1]
\ AT A–1 = [1tanx–tanx1]
= [1+tan2x1–tan2x1+tan2x2tanx1+tan2x–2tanx1+tan2x1–tan2x] =[cos2xsin2x–sin2xcos2x]