Solveeit Logo

Question

Question: If $A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$, then the value of $|A'A^{-1}|$ is...

If A=[1tanxtanx1]A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}, then the value of AA1|A'A^{-1}| is

A

-1

B

0

C

1

D

2

Answer

1

Explanation

Solution

Using determinant properties, AA1=AA1|A'A^{-1}| = |A'| |A^{-1}|. Since A=A|A'| = |A| and A1=1/A|A^{-1}| = 1/|A| (as A=1+tan2x=sec2x0|A| = 1+\tan^2 x = \sec^2 x \neq 0), we have AA1=A(1/A)=1|A'A^{-1}| = |A| \cdot (1/|A|) = 1.