Question
Question: If $A = \begin{bmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta &...
If A=1−cosθ−1cosθ1−cosθ1cosθ1; then for all θ∈(43π,45π), det(A) lies in the interval:

A
(1, 25]
B
(3, 4]
C
(0, 23]
D
(23, 3]
Answer
(3, 4]
Explanation
Solution
The determinant of A, det(A), is calculated as follows:
det(A)=1⋅1−cosθcosθ1−cosθ⋅−cosθ−1cosθ1+1⋅−cosθ−11−cosθ
det(A)=1⋅(1+cos2θ)−cosθ⋅(−cosθ+cosθ)+1⋅(cos2θ+1)
det(A)=(1+cos2θ)−cosθ⋅(0)+(1+cos2θ)
det(A)=2+2cos2θ
Given θ∈(43π,45π), the range of cosθ is [−1,−21).
Therefore, the range of cos2θ is (21,1].
Finally, the range of det(A) = 2+2cos2θ is (3,4].