Solveeit Logo

Question

Question: If $A = \begin{bmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta &...

If A=[1cosθ1cosθ1cosθ1cosθ1]A = \begin{bmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 1 \end{bmatrix}; then for all θ(3π4,5π4)\theta \in (\frac{3\pi}{4}, \frac{5\pi}{4}), det(A) lies in the interval:

A

(1, 52\frac{5}{2}]

B

(3, 4]

C

(0, 32\frac{3}{2}]

D

(32\frac{3}{2}, 3]

Answer

(3, 4]

Explanation

Solution

The determinant of A, det(A), is calculated as follows:

det(A)=11cosθcosθ1cosθcosθcosθ11+1cosθ11cosθ\text{det}(A) = 1 \cdot \begin{vmatrix} 1 & \cos \theta \\ -\cos \theta & 1 \end{vmatrix} - \cos \theta \cdot \begin{vmatrix} -\cos \theta & \cos \theta \\ -1 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} -\cos \theta & 1 \\ -1 & -\cos \theta \end{vmatrix}

det(A)=1(1+cos2θ)cosθ(cosθ+cosθ)+1(cos2θ+1)\text{det}(A) = 1 \cdot (1 + \cos^2 \theta) - \cos \theta \cdot (-\cos \theta + \cos \theta) + 1 \cdot (\cos^2 \theta + 1)

det(A)=(1+cos2θ)cosθ(0)+(1+cos2θ)\text{det}(A) = (1 + \cos^2 \theta) - \cos \theta \cdot (0) + (1 + \cos^2 \theta)

det(A)=2+2cos2θ\text{det}(A) = 2 + 2 \cos^2 \theta

Given θ(3π4,5π4)\theta \in (\frac{3\pi}{4}, \frac{5\pi}{4}), the range of cosθ\cos \theta is [1,12)[-1, -\frac{1}{\sqrt{2}}).

Therefore, the range of cos2θ\cos^2 \theta is (12,1](\frac{1}{2}, 1].

Finally, the range of det(A) = 2+2cos2θ2 + 2 \cos^2 \theta is (3,4](3, 4].