Solveeit Logo

Question

Question: If $A = \begin{bmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta &...

If A=[1cosθ1cosθ1cosθ1cosθ1]A = \begin{bmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 1 \end{bmatrix}; then for all θ(3π4,5π4)\theta \in (\frac{3\pi}{4}, \frac{5\pi}{4}), det(A) lies in the interval:

A

(1, \frac{5}{2}]

B

(3, 4]

C

(0, \frac{3}{2}]

D

(\frac{3}{2}, 3]

Answer

(3, 4]

Explanation

Solution

The determinant of the matrix AA is calculated as follows:

det(A)=1(1+cos2θ)cosθ(cosθ+cosθ)+1(cos2θ+1)=2+2cos2θ\det(A) = 1(1 + \cos^2 \theta) - \cos \theta(-\cos \theta + \cos \theta) + 1(\cos^2 \theta + 1) = 2 + 2\cos^2 \theta

Given θ(3π4,5π4)\theta \in (\frac{3\pi}{4}, \frac{5\pi}{4}), the range of cosθ\cos \theta is (1,12](-1, -\frac{1}{\sqrt{2}}]. Therefore, the range of cos2θ\cos^2 \theta is (12,1](\frac{1}{2}, 1].

Substituting this into the determinant expression:

2+2(12)<2+2cos2θ2+2(1)2 + 2(\frac{1}{2}) < 2 + 2\cos^2 \theta \le 2 + 2(1)

3<det(A)43 < \det(A) \le 4

Thus, det(A)(3,4]\det(A) \in (3, 4].