Question
Question: If $A = \begin{bmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta &...
If A=1−cosθ−1cosθ1−cosθ1cosθ1; then for all θ∈(43π,45π), det(A) lies in the interval:

A
(1, \frac{5}{2}]
B
(3, 4]
C
(0, \frac{3}{2}]
D
(\frac{3}{2}, 3]
Answer
(3, 4]
Explanation
Solution
The determinant of the matrix A is calculated as follows:
det(A)=1(1+cos2θ)−cosθ(−cosθ+cosθ)+1(cos2θ+1)=2+2cos2θ
Given θ∈(43π,45π), the range of cosθ is (−1,−21]. Therefore, the range of cos2θ is (21,1].
Substituting this into the determinant expression:
2+2(21)<2+2cos2θ≤2+2(1)
3<det(A)≤4
Thus, det(A)∈(3,4].