Solveeit Logo

Question

Question: If A = \(\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}\), then A<sup>–1</sup> is equal to...

If A = [1235]\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}, then A–1 is equal to

A

[5231]\begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}

B

[5321]\begin{bmatrix} –5 & 3 \\ 2 & –1 \end{bmatrix}

C

[5231]\begin{bmatrix} –5 & 2 \\ 3 & –1 \end{bmatrix}

D

None of these

Answer

[5231]\begin{bmatrix} –5 & 2 \\ 3 & –1 \end{bmatrix}

Explanation

Solution

A–1 = adj6muAA\frac{adj\mspace{6mu} A}{|A|}

Q |A| = – 1

adj A = [5231]\begin{bmatrix} 5 & –2 \\ –3 & 1 \end{bmatrix}

so, A–1 = [5231]\begin{bmatrix} –5 & 2 \\ 3 & –1 \end{bmatrix}