Solveeit Logo

Question

Question: If A = \(\begin{bmatrix} 1 & 2 \\ 3 & - 5 \end{bmatrix}\), B = \(\begin{bmatrix} 1 & 0 \\ 0 & 2 \end...

If A = [1235]\begin{bmatrix} 1 & 2 \\ 3 & - 5 \end{bmatrix}, B = [1002]\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} and X is a matrix such that

A = B X. Then X equals

A

$\frac{1}{2}\begin{bmatrix}

  • 2 & 4 \ 3 & 5 \end{bmatrix}$
B

12[2435]\frac{1}{2}\begin{bmatrix} 2 & 4 \\ 3 & - 5 \end{bmatrix}

C

[2435]\begin{bmatrix} 2 & 4 \\ 3 & - 5 \end{bmatrix}

D

None of these

Answer

12[2435]\frac{1}{2}\begin{bmatrix} 2 & 4 \\ 3 & - 5 \end{bmatrix}

Explanation

Solution

X = B–1A

B–1 = 12[2001]\frac{1}{2}\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}

X = 12[2001]\frac { 1 } { 2 } \left[ \begin{array} { l l } 2 & 0 \\ 0 & 1 \end{array} \right] [1235]\begin{bmatrix} 1 & 2 \\ 3 & - 5 \end{bmatrix}

̃ X = 12[2435]\frac{1}{2}\begin{bmatrix} 2 & 4 \\ 3 & - 5 \end{bmatrix}