Solveeit Logo

Question

Question: If A = \(\begin{bmatrix} 1 & 2 \\ 3 & - 5 \end{bmatrix}\), B = \(\begin{bmatrix} 1 & 0 \\ 0 & 2 \end...

If A = [1235]\begin{bmatrix} 1 & 2 \\ 3 & - 5 \end{bmatrix}, B = [1002]\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}and X is a matrix such that A = BX, then X equals-

A

12\frac { 1 } { 2 } $\begin{bmatrix}

  • 2 & 4 \ 3 & 5 \end{bmatrix}$
B

12\frac { 1 } { 2 } [2435]\begin{bmatrix} 2 & 4 \\ 3 & - 5 \end{bmatrix}

C

[2435]\begin{bmatrix} 2 & 4 \\ 3 & - 5 \end{bmatrix}

D

None

Answer

12\frac { 1 } { 2 } [2435]\begin{bmatrix} 2 & 4 \\ 3 & - 5 \end{bmatrix}

Explanation

Solution

A = BX ̃ B–1 A = (B–1 B) X ̃ B–1 A = X

Q B–1 = 12\frac { 1 } { 2 } [2001]\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} ̃ X = 12\frac { 1 } { 2 } [2435]\begin{bmatrix} 2 & 4 \\ 3 & - 5 \end{bmatrix}