Question
Question: if $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and $M = A + A^2 + A^3 + ...
if A=100110111 and M=A+A2+A3+...+A20, then the sum of all the elements of the matrix M is equal to ____.

Answer
2020
Explanation
Solution
We are given
A=100110111.Notice that A=I+N where
N=000100110withN3=0.By the binomial theorem for matrices,
An=(I+N)n=I+nN+(2n)N2.Since
N2=000000100,we have
An=100n10n+(2n)n1.Sum of elements of An:
- Row 1: 1+n+(n+(2n))=1+2n+(2n).
- Row 2: 0+1+n=1+n.
- Row 3: 0+0+1=1.
Total of An:
S(n)=[1+2n+(2n)]+(1+n)+1=3+3n+(2n),where (2n)=2n(n−1).
Matrix M is:
M=A+A2+⋯+A20.Thus, total sum of elements in M is
n=1∑20(3+3n+2n(n−1)).Break into parts:
-
Constant term: ∑n=1203=3×20=60.
-
Linear term: ∑n=1203n=3(220×21)=3×210=630.
-
Quadratic term:
n=1∑202n(n−1)=21n=1∑20(n2−n).We know:
n=1∑20n2=620⋅21⋅41=2870,n=1∑20n=210.So,
21(2870−210)=22660=1330.
Adding these,
Total Sum=60+630+1330=2020.