Solveeit Logo

Question

Question: if $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and $M = A + A^2 + A^3 + ...

if A=[111011001]A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} and M=A+A2+A3+...+A20M = A + A^2 + A^3 + ... + A^{20}, then the sum of all the elements of the matrix MM is equal to ____.

Answer

2020

Explanation

Solution

We are given

A=[111011001].A=\begin{bmatrix}1 & 1 & 1\\0 & 1 & 1\\0 & 0 & 1\end{bmatrix}.

Notice that A=I+NA = I + N where

N=[011001000]withN3=0.N=\begin{bmatrix}0 & 1 & 1\\0 & 0 & 1\\0 & 0 & 0\end{bmatrix}\quad\text{with}\quad N^3=0.

By the binomial theorem for matrices,

An=(I+N)n=I+nN+(n2)N2.A^n=(I+N)^n = I + nN + \binom{n}{2}N^2.

Since

N2=[001000000],N^2=\begin{bmatrix}0 & 0 & 1\\0 & 0 & 0\\0 & 0 & 0\end{bmatrix},

we have

An=[1nn+(n2)01n001].A^n = \begin{bmatrix} 1 & n & n+\binom{n}{2} \\[1mm] 0 & 1 & n \\[1mm] 0 & 0 & 1 \end{bmatrix}.

Sum of elements of AnA^n:

  • Row 1: 1+n+(n+(n2))=1+2n+(n2)1 + n + \left(n+\binom{n}{2}\right) = 1 + 2n + \binom{n}{2}.
  • Row 2: 0+1+n=1+n0 + 1 + n = 1+n.
  • Row 3: 0+0+1=10+0+1 = 1.

Total of AnA^n:

S(n)=[1+2n+(n2)]+(1+n)+1=3+3n+(n2),S(n)=\Big[1+2n+\binom{n}{2}\Big] + (1+n) + 1 = 3+3n+\binom{n}{2},

where (n2)=n(n1)2\binom{n}{2}=\frac{n(n-1)}{2}.

Matrix MM is:

M=A+A2++A20.M=A+A^2+\cdots+A^{20}.

Thus, total sum of elements in MM is

n=120(3+3n+n(n1)2).\sum_{n=1}^{20}\left(3+3n+\frac{n(n-1)}{2}\right).

Break into parts:

  1. Constant term: n=1203=3×20=60.\sum_{n=1}^{20} 3 = 3 \times 20=60.

  2. Linear term: n=1203n=3(20×212)=3×210=630.\sum_{n=1}^{20}3n=3\left(\frac{20 \times 21}{2}\right)=3\times210=630.

  3. Quadratic term:

    n=120n(n1)2=12n=120(n2n).\sum_{n=1}^{20}\frac{n(n-1)}{2} = \frac{1}{2}\sum_{n=1}^{20}(n^2-n).

    We know:

    n=120n2=2021416=2870,n=120n=210.\sum_{n=1}^{20} n^2 = \frac{20\cdot21\cdot41}{6} = 2870,\quad \sum_{n=1}^{20} n = 210.

    So,

    12(2870210)=26602=1330.\frac{1}{2}(2870-210)=\frac{2660}{2}=1330.

Adding these,

Total Sum=60+630+1330=2020.\text{Total Sum} = 60 + 630 + 1330 = 2020.