Solveeit Logo

Question

Question: If $A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$ and $A^3 - 2A^2 + \lambd...

If A=[110221011]A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} and A32A2+λA+I=OA^3 - 2A^2 + \lambda A + I = \mathbf{O} (Null matrix), then-

A

λ=4\lambda = 4

B

λ=4\lambda = -4

C

A2+A1=56|A^2 + A^{-1}| = 56

D

A2+A1=14|A^2 + A^{-1}| = 14

Answer

(B), (C)

Explanation

Solution

The given matrix is A=[110221011]A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}. The given matrix equation is A32A2+λA+I=OA^3 - 2A^2 + \lambda A + I = \mathbf{O}.

According to the Cayley-Hamilton theorem, every square matrix satisfies its own characteristic equation. The characteristic equation of matrix A is given by AxI=0|A - xI| = 0. AxI=[1x1022x1011x]A - xI = \begin{bmatrix} 1-x & 1 & 0 \\ 2 & 2-x & 1 \\ 0 & 1 & -1-x \end{bmatrix}

The determinant AxI|A - xI| is: AxI=(1x)[(2x)(1x)1(1)]1[2(1x)1(0)]+0[]|A - xI| = (1-x)[(2-x)(-1-x) - 1(1)] - 1[2(-1-x) - 1(0)] + 0[\dots] =(1x)[22x+x+x21]1[22x]= (1-x)[-2 - 2x + x + x^2 - 1] - 1[-2 - 2x] =(1x)[x2x3]+2+2x= (1-x)[x^2 - x - 3] + 2 + 2x =x2x3x3+x2+3x+2+2x= x^2 - x - 3 - x^3 + x^2 + 3x + 2 + 2x =x3+2x2+4x1= -x^3 + 2x^2 + 4x - 1

The characteristic equation is x3+2x2+4x1=0-x^3 + 2x^2 + 4x - 1 = 0, or x32x24x+1=0x^3 - 2x^2 - 4x + 1 = 0.

By the Cayley-Hamilton theorem, the matrix A satisfies this equation: A32A24A+I=OA^3 - 2A^2 - 4A + I = \mathbf{O}

We are given the equation A32A2+λA+I=OA^3 - 2A^2 + \lambda A + I = \mathbf{O}. Comparing the two equations, we have: (A32A24A+I)(A32A2+λA+I)=OO(A^3 - 2A^2 - 4A + I) - (A^3 - 2A^2 + \lambda A + I) = \mathbf{O} - \mathbf{O} (4A)(λA)=O(-4A) - (\lambda A) = \mathbf{O} (4λ)A=O(-4 - \lambda)A = \mathbf{O}

To find λ\lambda, we need to check if A is the null matrix. A is clearly not the null matrix. We can also check the determinant of A to see if it is invertible. A=110221011=1(2×11×1)1(2×11×0)+0=1(21)1(2)=3+2=1|A| = \begin{vmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & -1 \end{vmatrix} = 1(2 \times -1 - 1 \times 1) - 1(2 \times -1 - 1 \times 0) + 0 = 1(-2-1) - 1(-2) = -3 + 2 = -1. Since A=10|A| = -1 \neq 0, A is invertible.

Since (4λ)A=O(-4 - \lambda)A = \mathbf{O} and A is invertible, we can multiply by A1A^{-1} from the right: (4λ)AA1=OA1(-4 - \lambda)A A^{-1} = \mathbf{O} A^{-1} (4λ)I=O(-4 - \lambda)I = \mathbf{O} 4λ=0-4 - \lambda = 0 λ=4\lambda = -4.

Thus, option (B) is correct, and option (A) is incorrect.

Now let's evaluate A2+A1|A^2 + A^{-1}|. From the characteristic equation A32A24A+I=OA^3 - 2A^2 - 4A + I = \mathbf{O}, we can find an expression for A1A^{-1}. Since A is invertible, multiply the equation by A1A^{-1}: A1(A32A24A+I)=A1OA^{-1}(A^3 - 2A^2 - 4A + I) = A^{-1}\mathbf{O} A1A32A1A24A1A+A1I=OA^{-1}A^3 - 2A^{-1}A^2 - 4A^{-1}A + A^{-1}I = \mathbf{O} A22A4I+A1=OA^2 - 2A - 4I + A^{-1} = \mathbf{O} A1=A2+2A+4IA^{-1} = -A^2 + 2A + 4I

Now, consider the expression A2+A1A^2 + A^{-1}: A2+A1=A2+(A2+2A+4I)=2A+4IA^2 + A^{-1} = A^2 + (-A^2 + 2A + 4I) = 2A + 4I

We need to calculate the determinant of 2A+4I2A + 4I. 2A=2[110221011]=[220442022]2A = 2 \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 0 \\ 4 & 4 & 2 \\ 0 & 2 & -2 \end{bmatrix} 4I=4[100010001]=[400040004]4I = 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} 2A+4I=[220442022]+[400040004]=[2+42+00+04+04+42+00+02+02+4]=[620482022]2A + 4I = \begin{bmatrix} 2 & 2 & 0 \\ 4 & 4 & 2 \\ 0 & 2 & -2 \end{bmatrix} + \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 2+4 & 2+0 & 0+0 \\ 4+0 & 4+4 & 2+0 \\ 0+0 & 2+0 & -2+4 \end{bmatrix} = \begin{bmatrix} 6 & 2 & 0 \\ 4 & 8 & 2 \\ 0 & 2 & 2 \end{bmatrix}

Now, calculate the determinant of this matrix: 2A+4I=620482022|2A + 4I| = \begin{vmatrix} 6 & 2 & 0 \\ 4 & 8 & 2 \\ 0 & 2 & 2 \end{vmatrix} Expand along the first row: =6822224202+04802= 6 \begin{vmatrix} 8 & 2 \\ 2 & 2 \end{vmatrix} - 2 \begin{vmatrix} 4 & 2 \\ 0 & 2 \end{vmatrix} + 0 \begin{vmatrix} 4 & 8 \\ 0 & 2 \end{vmatrix} =6((8)(2)(2)(2))2((4)(2)(0)(2))+0= 6((8)(2) - (2)(2)) - 2((4)(2) - (0)(2)) + 0 =6(164)2(80)= 6(16 - 4) - 2(8 - 0) =6(12)2(8)= 6(12) - 2(8) =7216=56= 72 - 16 = 56

So, A2+A1=56|A^2 + A^{-1}| = 56. Option (C) A2+A1=56|A^2 + A^{-1}| = 56 is correct, and option (D) A2+A1=14|A^2 + A^{-1}| = 14 is incorrect.

The question asks "then-", followed by options, suggesting that multiple options might be correct. Based on our calculations, options (B) and (C) are correct.