Solveeit Logo

Question

Question: If A = $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ is a root of polynomial $...

If A = [102021203]\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} is a root of polynomial x36x2+7x+k=0x^{3} - 6x^{2} + 7x + k = 0, then the value of k is

A

2

B

4

C

-2

D

1

Answer

2

Explanation

Solution

Given that the matrix A=[102021203]A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} is a root of the polynomial x36x2+7x+k=0x^{3} - 6x^{2} + 7x + k = 0. This means that when we substitute the matrix A into the polynomial, the result is the zero matrix. For the constant term k, we replace it with kIkI, where I is the identity matrix of the same order as A (which is 3x3). So, we have the matrix equation:

A36A2+7A+kI=0A^{3} - 6A^{2} + 7A + kI = 0

According to the Cayley-Hamilton theorem, every square matrix satisfies its own characteristic equation. The characteristic equation of a matrix A is given by AλI=0|A - \lambda I| = 0.

Let's find the characteristic equation of matrix A:

AλI=[1λ0202λ1203λ]A - \lambda I = \begin{bmatrix} 1-\lambda & 0 & 2 \\ 0 & 2-\lambda & 1 \\ 2 & 0 & 3-\lambda \end{bmatrix}

The determinant AλI|A - \lambda I| is calculated by expanding along the second column:

AλI=(2λ)[(1λ)(3λ)(2)(2)]|A - \lambda I| = (2-\lambda)[(1-\lambda)(3-\lambda) - (2)(2)]

AλI=(2λ)[λ24λ1]|A - \lambda I| = (2-\lambda)[\lambda^2 - 4\lambda - 1]

AλI=λ3+6λ27λ2|A - \lambda I| = -\lambda^3 + 6\lambda^2 - 7\lambda - 2

The characteristic equation is AλI=0|A - \lambda I| = 0, so:

λ3+6λ27λ2=0-\lambda^3 + 6\lambda^2 - 7\lambda - 2 = 0

λ36λ2+7λ+2=0\lambda^3 - 6\lambda^2 + 7\lambda + 2 = 0

By the Cayley-Hamilton theorem, the matrix A satisfies this equation:

A36A2+7A+2I=0A^3 - 6A^2 + 7A + 2I = 0

Comparing with A36A2+7A+kI=0A^{3} - 6A^{2} + 7A + kI = 0, we get k=2k = 2.