Question
Question: If A = \(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\) or \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bma...
If A = [1101] or [1001], then which of the following holds of all n ³ 1,
A
An = nA – (n – 1) I
B
An = 2n–1 A – (n – 1)I
C
An = nA + (n – 1)I
D
An = 2n–1 A + (n – 1) I
Answer
An = nA – (n – 1) I
Explanation
Solution
=[1101]̃ An = nA – (n – 1) I
̃ A = nA – (n – 1) A = A
A2 = [1201]
Am+1 = Am. A = (mA – (m– 1) A) A
= mA2 – mA + A
= m [1201]– m A + [1101]
= [m+1m+10m+1] – m [1001]
= (m + 1)A – mA = A
So (1) is true