Solveeit Logo

Question

Question: If A = \(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\) or \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bma...

If A = [1011]\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} or [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, then which of the following holds of all n ³ 1,

A

An = nA – (n – 1) I

B

An = 2n–1 A – (n – 1)I

C

An = nA + (n – 1)I

D

An = 2n–1 A + (n – 1) I

Answer

An = nA – (n – 1) I

Explanation

Solution

=[1011]\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}̃ An = nA – (n – 1) I

̃ A = nA – (n – 1) A = A

A2 = [1021]\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}

Am+1 = Am. A = (mA – (m– 1) A) A

= mA2 – mA + A

= m [1021]\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}– m A + [1011]\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}

= [m+10m+1m+1]\begin{bmatrix} m + 1 & 0 \\ m + 1 & m + 1 \end{bmatrix} – m [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

= (m + 1)A – mA = A

So (1) is true