Solveeit Logo

Question

Question: If A = \(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\) or \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bma...

If A = [1011]\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} or [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, then which of the following holds for all n ³ 1, by

principle of mathematical induction

A

An = nA – (n– 1) I

B

An = 2n–1 A– (n–1) I

C

An = nA + (n –1) I

D

An = 2n–1 A+ (n–1) I

Answer

An = nA – (n– 1) I

Explanation

Solution

Let A = [1011]\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}

̃ An = nA – (n –1)I

̃ A = nA – (n –1) A = A which is true

If A = [1011]\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} ̃ A2 = [1021]\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}= A

Using Mathematical Induction,

Am+1 = Am. A= (mA –(m–1)I) A

= mA2 –mA + A

= m [1021]\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}–mA + [1011]\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}

= m [1021]\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}– m [1011]\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}+ [1011]\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}m – m [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

= [mm+1+m02mm+1+0mm+1+m]\begin{bmatrix} m - m + 1 + m & 0 \\ 2m - m + 1 + 0 & m - m + 1 + m \end{bmatrix}– m [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

= [m+10m+1m+1]\begin{bmatrix} m + 1 & 0 \\ m + 1 & m + 1 \end{bmatrix}– m [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

= (m +1)A –mA which is also true.

Thus choice (1) is true for both values of A.

If (1) is possible then (3) can’t be true. Again (2) and (4) are not possible (they have no symmetricity).

Choice (1) is correct.