Solveeit Logo

Question

Question: If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$ and $A^{10} = \begin{bmat...

If A=[100010121]A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} and A10=[a1b1c1a2b2c2a3b3c3]A^{10} = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} then

Σa1+Σb1+Σc1\Sigma a_1 + \Sigma b_1 + \Sigma c_1 equals

A

11

B

22

C

33

D

44

Answer

33

Explanation

Solution

The given matrix is A=[100010121]A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}. We want to find A10A^{10}.

Let's write AA as the sum of the identity matrix II and a matrix NN: A=[100010001]+[000000120]=I+NA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 0 \end{bmatrix} = I + N.

Let's compute the powers of NN: N1=[000000120]N^1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 0 \end{bmatrix} N2=NN=[000000120][000000120]=[000000000]N^2 = N \cdot N = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.

Since N2=0N^2 = \mathbf{0}, NN is a nilpotent matrix of index 2. We want to compute A10=(I+N)10A^{10} = (I + N)^{10}. Since II commutes with any matrix (including NN), we can use the binomial theorem for matrices:

(I+N)10=(100)I10N0+(101)I9N1+(102)I8N2++(1010)I0N10(I + N)^{10} = \binom{10}{0} I^{10} N^0 + \binom{10}{1} I^9 N^1 + \binom{10}{2} I^8 N^2 + \dots + \binom{10}{10} I^0 N^{10}.

Since N2=0N^2 = \mathbf{0}, all terms with NkN^k for k2k \ge 2 are zero matrices. So, (I+N)10=(100)I+(101)N(I + N)^{10} = \binom{10}{0} I + \binom{10}{1} N. (100)=1\binom{10}{0} = 1 and (101)=10\binom{10}{1} = 10. A10=1I+10N=[100010001]+10[000000120]=[100010001]+[00000010200]=[10001010201]A^{10} = 1 \cdot I + 10 \cdot N = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + 10 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 10 & 20 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 10 & 20 & 1 \end{bmatrix}.

The matrix A10A^{10} is given as [a1b1c1a2b2c2a3b3c3]\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}. So, a1=1,b1=0,c1=0a_1 = 1, b_1 = 0, c_1 = 0. a2=0,b2=1,c2=0a_2 = 0, b_2 = 1, c_2 = 0. a3=10,b3=20,c3=1a_3 = 10, b_3 = 20, c_3 = 1.

The expression to evaluate is Σa1+Σb1+Σc1\Sigma a_1 + \Sigma b_1 + \Sigma c_1. The notation Σa1\Sigma a_1 likely refers to the sum of elements in the first column, Σb1\Sigma b_1 to the sum of elements in the second column, and Σc1\Sigma c_1 to the sum of elements in the third column.

Sum of elements in the first column = a1+a2+a3=1+0+10=11a_1 + a_2 + a_3 = 1 + 0 + 10 = 11. Sum of elements in the second column = b1+b2+b3=0+1+20=21b_1 + b_2 + b_3 = 0 + 1 + 20 = 21. Sum of elements in the third column = c1+c2+c3=0+0+1=1c_1 + c_2 + c_3 = 0 + 0 + 1 = 1. The required sum is (a1+a2+a3)+(b1+b2+b3)+(c1+c2+c3)=11+21+1=33(a_1+a_2+a_3) + (b_1+b_2+b_3) + (c_1+c_2+c_3) = 11 + 21 + 1 = 33.