Solveeit Logo

Question

Question: If \(A = \begin{bmatrix} 1 & - 1 \\ 2 & - 1 \end{bmatrix},B = \begin{bmatrix} a & 1 \\ b & - 1 \end{...

If A=[1121],B=[a1b1]A = \begin{bmatrix} 1 & - 1 \\ 2 & - 1 \end{bmatrix},B = \begin{bmatrix} a & 1 \\ b & - 1 \end{bmatrix}and (A+B)2=A2+B2(A + B)^{2} = A^{2} + B^{2}then value of a and b are

A

a=4,b=1a = 4,b = 1

B

a=1,b=4a = 1,b = 4

C

a=0,b=4a = 0,b = 4

D

a=2,b=4a = 2,b = 4

Answer

a=1,b=4a = 1,b = 4

Explanation

Solution

We have (A+B)2=A2+B2+A.B+BA(A + B)^{2} = A^{2} + B^{2} + A.B + BA

AB+BA=0AB + BA = 0

[ab22ab3]+[a+2a1b2b+1]=0\left[ \begin{array} { c c } a - b & 2 \\ 2 a - b & 3 \end{array} \right] + \left[ \begin{array} { l l } a + 2 & - a - 1 \\ b - 2 & - b + 1 \end{array} \right] = 0 [2a+2ba+12a24b]=0\begin{bmatrix} 2a + 2 - b & - a + 1 \\ 2a - 2 & 4 - b \end{bmatrix} = 0. On comparing, we get, a+1=0- a + 1 = 0a=1a = 1 and 4b=04 - b = 0

b=4b = 4