Solveeit Logo

Question

Question: If A = \(\begin{bmatrix} 0 & i \\ –i & 0 \end{bmatrix}\) then A<sup>40</sup> is equal to...

If A = [0ii0]\begin{bmatrix} 0 & i \\ –i & 0 \end{bmatrix} then A40 is equal to

A

[040i40i0]\begin{bmatrix} 0 & 40i \\ –40i & 0 \end{bmatrix}

B

[020i20i0]\begin{bmatrix} 0 & 20i \\ –20i & 0 \end{bmatrix}

C

[200020]\begin{bmatrix} 20 & 0 \\ 0 & 20 \end{bmatrix}

D

[1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Answer

[1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Explanation

Solution

A = [0ii0]\begin{bmatrix} 0 & i \\ –i & 0 \end{bmatrix}

A2 = [0ii0]\begin{bmatrix} 0 & i \\ –i & 0 \end{bmatrix} [0ii0]\overset{\downarrow}{\begin{bmatrix} 0 & i \\ –i & 0 \end{bmatrix}}

A2 = [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I

A40 = (A2)20 = I20

A40 = I