Solveeit Logo

Question

Question: If A =\(\begin{bmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & - \beta \\ \gamma & - \gamma & \gamm...

If A =[0αα2βββγγγ]\begin{bmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & - \beta \\ \gamma & - \gamma & \gamma \end{bmatrix} is an orthogonal matrix, then the

number of possible triplets (a, b, g)

A

8

B

6

C

4

D

2

Answer

8

Explanation

Solution

AAT = I

[0αα2βββγγγ]\begin{bmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & - \beta \\ \gamma & - \gamma & \gamma \end{bmatrix}

[02βγαβγαβγ]\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & - \gamma \\ \alpha & - \beta & \gamma \end{bmatrix}=[100010001]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

̃ [2α20006β20003γ2]\begin{bmatrix} 2\alpha^{2} & 0 & 0 \\ 0 & 6\beta^{2} & 0 \\ 0 & 0 & 3\gamma^{2} \end{bmatrix} [100010001]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

̃ 2a2 = 1, 6b2 = 1, 3g2 = 1

\ a = ± 12\frac{1}{\sqrt{2}}, b = ± 16\frac{1}{\sqrt{6}}, g = ± 13\frac{1}{\sqrt{3}}