Question
Question: If A = \(\begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix}\) and f(x) = 1 + x + x<sup>2</sup>+ ..... + x<...
If A = [0050] and f(x) = 1 + x + x2+ ..... + x16, then f(1) is equal to –
A
0
B
[1051]
C
[1050]
D
[0151]
Answer
[1051]
Explanation
Solution
f(1) = I + A + A2 + ........ + A16
A = [0050] ̃ A2 = [0050][0050] = [0000]
A3 = A2.A = [0000]
Similarly A4 = A5 =............. = A16 = [0000]
f(1) = [1001]+[0050]+[0000]+....+[0000]= [1051]