Solveeit Logo

Question

Question: If A = \(\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix}\) and A<sup>–1</sup> = \(...

If A = [0121233a1]\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} and A–1 = [1/21/21/243c5/23/21/2]\begin{bmatrix} 1/2 & –1/2 & 1/2 \\ –4 & 3 & c \\ 5/2 & –3/2 & 1/2 \end{bmatrix}, then the value of a and c is equal to –

A

–1, 1

B

1, 2

C

1, – 1

D

1, 1

Answer

1, – 1

Explanation

Solution

AA–1 = I

[0121233a1]\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} [1/21/21/243c5/23/21/2]\overset{\downarrow \downarrow}{\begin{bmatrix} 1/2 & –1/2 & 1/2 \\ –4 & 3 & c \\ 5/2 & –3/2 & –1/2 \end{bmatrix}} = [100010001]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

Comparing (a31)

Ž 32\frac{3}{2} – 4a + 52\frac{5}{2} = 0

4 – 4a = 0

a = 1 \end{matrix}$$ Comparing (a<sub>13</sub>) 0 + C + 1 0 C = – 1