Solveeit Logo

Question

Question: If A = \(\begin{bmatrix} 0 & –1 & 2 \\ 1 & 0 & 3 \\ –2 & –3 & 0 \end{bmatrix}\). Then A + 2A<sup>T</...

If A = [012103230]\begin{bmatrix} 0 & –1 & 2 \\ 1 & 0 & 3 \\ –2 & –3 & 0 \end{bmatrix}. Then A + 2AT equals to

A

AT

B

22

C

A

D

–AT

Answer

AT

Explanation

Solution

A = [012103230]\begin{bmatrix} 0 & –1 & 2 \\ 1 & 0 & 3 \\ –2 & –3 & 0 \end{bmatrix}

2AT = [024206460]\begin{bmatrix} 0 & 2 & –4 \\ –2 & 0 & –6 \\ 4 & 6 & 0 \end{bmatrix}

A + 2AT = [012103230]\begin{bmatrix} 0 & 1 & –2 \\ –1 & 0 & –3 \\ 2 & 3 & 0 \end{bmatrix} =AT