Question
Question: If A = \(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r \end{bmatrix}\) then A<sup>3</sup> – rA...
If A = 00p10q01r then A3 – rA2 – qA =
A
p I
B
q I
C
r I
D
None of these
Answer
p I
Explanation
Solution
A2 = AA = 00p10q01r × 00p10q01r= 0ppr0qp+qr1rq+r2Again A3 = A2A
=0ppr0qp+qr1rq+r2 × 00p10q01r
= pprpq+r2pqp+qrpr+q2+qr2rq+r2p+2qr+r3
= p000p000p + 00pqq0q20qqr + 0prpr20qrpr+qr2rr2qr+r3
= p 100010001 + q 00p10q01r
+ r 0ppr0qp+qr1rq+r2
= pI + qA + rA2
\ a3 – rA2 – qA = pI.