Question
Question: If A = \(\begin{bmatrix} 0 & - 1 & 2 \\ 1 & 0 & 3 \\ - 2 & - 3 & 0 \end{bmatrix}\), then A + 2A<sup...
If A = $\begin{bmatrix} 0 & - 1 & 2 \ 1 & 0 & 3 \
- 2 & - 3 & 0 \end{bmatrix}$, then A + 2AT equals –
A
A
B
–AT
C
AT
D
2A2
Answer
AT
Explanation
Solution
AT = $\begin{bmatrix} 0 & 1 & - 2 \
- 1 & 0 & - 3 \ 2 & 3 & 0 \end{bmatrix},2A<sup>T</sup>=\begin{bmatrix} 0 & 2 & - 4 \
- 2 & 0 & - 6 \ 4 & 6 & 0 \end{bmatrix}$2 AT + A
= $\begin{bmatrix} 0 & 1 & - 2 \
- 1 & 0 & - 3 \ 2 & 3 & 0 \end{bmatrix}$ = AT
Alternate
AT = – A (Q A is skew symmetric)
So 2AT + A = AT + A – A = AT.