Solveeit Logo

Question

Question: If A = \(\begin{bmatrix} 0 & - 1 & 2 \\ 1 & 0 & 3 \\ - 2 & - 3 & 0 \end{bmatrix}\), then A + 2A<sup...

If A = $\begin{bmatrix} 0 & - 1 & 2 \ 1 & 0 & 3 \

  • 2 & - 3 & 0 \end{bmatrix}$, then A + 2AT equals –
A

A

B

–AT

C

AT

D

2A2

Answer

AT

Explanation

Solution

AT = $\begin{bmatrix} 0 & 1 & - 2 \

  • 1 & 0 & - 3 \ 2 & 3 & 0 \end{bmatrix},2A<sup>T</sup>=, 2A<sup>T</sup> =\begin{bmatrix} 0 & 2 & - 4 \
  • 2 & 0 & - 6 \ 4 & 6 & 0 \end{bmatrix}$2 AT + A

= $\begin{bmatrix} 0 & 1 & - 2 \

  • 1 & 0 & - 3 \ 2 & 3 & 0 \end{bmatrix}$ = AT

Alternate

AT = – A (Q A is skew symmetric)

So 2AT + A = AT + A – A = AT.