Question
Question: If A = \(\begin{bmatrix} - 2 & 3 & - 1 \\ - 1 & 2 & - 1 \\ - 6 & 9 & - 4 \end{bmatrix}\) and B =\...
If A = $\begin{bmatrix}
- 2 & 3 & - 1 \
- 1 & 2 & - 1 \
- 6 & 9 & - 4 \end{bmatrix}andB=\begin{bmatrix} 1 & 3 & - 1 \ 2 & 2 & - 1 \ 3 & 0 & - 1 \end{bmatrix}$, then
A
A B = B A
B
AB | BA
C
A B = 21 B A
D
None of these.
Answer
A B = B A
Explanation
Solution
AB = −2−1−6329−1−1−4 123320−1−1−1
=$\begin{bmatrix}
- 2 + 6 - 3 & - 1 + 4 - 3 & - 6 + 18 - 12 \
- 6 + 6 + 0 & - 3 + 4 + 0 & - 18 + 18 + 0 \ 2 - 3 + 1 & 1 - 2 + 1 & 6 - 9 + 4 \end{bmatrix}$
=100010001 BA = $\begin{bmatrix}
- 2 & 3 & - 1 \
- 1 & 2 & - 1 \
- 6 & 9 & - 4 \end{bmatrix}$
= $\begin{bmatrix}
- 2 + 6 - 3 & - 4 - 2 + 6 & - 6 + 0 + 6 \ 3 + 6 - 9 & 6 + 4 - 9 & 9 + 0 - 9 \ 6 - 6 + 0 & - 2 - 2 + 4 & - 3 + 0 + 4 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$ ⇒ AB = BA