Solveeit Logo

Question

Mathematics Question on Matrices

If A=(15 02)A = \begin{pmatrix}1&5\\\ 0&2\end{pmatrix} , then

A

A22A+2I=0A^2 - 2A + 2I = 0

B

A23A+2I=0A^2 - 3A + 2I = 0

C

A25A+2I=0A^2 - 5A + 2I = 0

D

2A2A+I=02A^2 - A + I = 0

Answer

A23A+2I=0A^2 - 3A + 2I = 0

Explanation

Solution

We have,
A=[15 02]A=\begin{bmatrix}1 & 5 \\\ 0 & 2\end{bmatrix}
A2=AA=[15 02][15 02]=[115 04]\therefore A^{2}=A \cdot A=\begin{bmatrix}1 & 5 \\\ 0 & 2\end{bmatrix}\begin{bmatrix}1 & 5 \\\ 0 & 2\end{bmatrix}=\begin{bmatrix}1 & 15 \\\ 0 & 4\end{bmatrix}
A23A+2I=[115 04]3[15 02]\therefore A^{2}-3 A+2 I=\begin{bmatrix}1 & 15 \\\ 0 & 4\end{bmatrix}-3\begin{bmatrix}1 & 5 \\\ 0 & 2\end{bmatrix}
+2[10 01]=[00 00]+2\begin{bmatrix}1 & 0 \\\ 0 & 1\end{bmatrix}=\begin{bmatrix}0 & 0 \\\ 0 & 0\end{bmatrix}
A23A+2I=0\Rightarrow A^{2}-3 A+2 I=0