Solveeit Logo

Question

Mathematics Question on Matrices

If A=[21 12]A = \begin{bmatrix} \sqrt{2} & 1 \\\ -1 & \sqrt{2} \end{bmatrix}, B=[10 11]B = \begin{bmatrix} 1 & 0 \\\ 1 & 1 \end{bmatrix}, C=ABAC = ABA^\top and X=AC2AX = A^\top C^2 A, then det(X)\det (X) is equal to:

A

243

B

729

C

27

D

891

Answer

729

Explanation

Solution

Given:

A=[21 12]A = \begin{bmatrix} \sqrt{2} & 1 \\\ -1 & \sqrt{2} \end{bmatrix}, B=[10 01]B = \begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix}

First, find:

det(A)=(2)×(2)(1)×(1)=3\text{det}(A) = (\sqrt{2}) \times (\sqrt{2}) - (1) \times (-1) = 3

det(B)=1\text{det}(B) = 1

Now, compute C=ABATC = ABA^T. Since det(C)=(det(A))2×det(B)\text{det}(C) = (\text{det}(A))^2 \times \text{det}(B):

det(C)=32×1=9\text{det}(C) = 3^2 \times 1 = 9

For X=ATC2AX = A^T C^2 A, we use:

det(X)=[det(AT)]×[det(C2)]×[det(A)]\text{det}(X) = [\text{det}(A^T)] \times [\text{det}(C^2)] \times [\text{det}(A)]

Since det(AT)=det(A)\text{det}(A^T) = \text{det}(A) and det(C2)=(det(C))2\text{det}(C^2) = (\text{det}(C))^2:

det(X)=(det(A))×(det(C))2×(det(A))\text{det}(X) = (\text{det}(A)) \times (\text{det}(C))^2 \times (\text{det}(A))

det(X)=3×92×3=729\text{det}(X) = 3 \times 9^2 \times 3 = 729