Solveeit Logo

Question

Mathematics Question on Determinants

If A=[logx1 logx2]A = \begin{bmatrix}log\,x&-1\\\ -log\,x&2\end{bmatrix} and if det(A)=2det (A) = 2, then the value of xx is equal to

A

2

B

e2e^2

C

-2

D

ee

Answer

e2e^2

Explanation

Solution

Given, A=[logx1 logx2]A=\begin{bmatrix}\log x & -1 \\\ -\log x & 2\end{bmatrix}
A=[logx1 logx2]\therefore |A|=\begin{bmatrix}\log x & -1 \\\ -\log x & 2\end{bmatrix}
=2logxlogx=logx=2 \log x-\log x=\log x
But it is given, det(A)=A=2\operatorname{det}(A)=|A|=2
2=logxx=e2\therefore 2=\log x \Rightarrow x=e^{2}