Solveeit Logo

Question

Mathematics Question on Matrices

If A=[K4 4K]A = \begin{bmatrix} K & 4 \\\ 4 & K \end{bmatrix} and A3=729|A^3| = 729, then the value of K8K^8 is:

A

989^8

B

585^8

C

383^8

D

(3)8(-3)^8

Answer

585^8

Explanation

Solution

The determinant of A is:
A=K4 4K=KK44=K216.|A| = \begin{vmatrix} K & 4 \\\ 4 & K \end{vmatrix} = K \cdot K - 4 \cdot 4 = K^2 - 16.
Using the property of determinants:
A3=(A)3=729.|A|^3 = (|A|)^3 = 729.
Take the cube root:
A=7293=9.|A| = \sqrt[3]{729} = 9.
Thus:
K216=9    K2=25.K^2 - 16 = 9 \implies K^2 = 25.
Therefore:
K=±5.K = \pm 5.
The value of K8K^8 is:
K8=(K2)4=254.K^8 = (K^2)^4 = 25^4.
Calculate:
254=(252)2=6252=390625.25^4 = (25^2)^2 = 625^2 = 390625.
Final Answer:
585^8