Solveeit Logo

Question

Mathematics Question on Matrices

If A=[k0 0k],k0A = \begin{bmatrix} -k & 0 \\\ 0 & -k \end{bmatrix}, \, k \neq 0, then the value of mm in (AT)4=mA(A^T)^4 = mA is:

A

k-k

B

k4k^4

C

k3-k^3

D

1k\frac{1}{k}

Answer

k3-k^3

Explanation

Solution

The matrix AA is:

A = [k0 0k].\begin{bmatrix} -k & 0 \\\ 0 & -k \end{bmatrix}.

Raise AA to the power of 4:

A4=[(k)40 0(k)4]=[k40 0k4].A^4 = \begin{bmatrix} (-k)^4 & 0 \\\ 0 & (-k)^4 \end{bmatrix} = \begin{bmatrix} k^4 & 0 \\\ 0 & k^4 \end{bmatrix}.

Now, solve for mm in:

A4=mA    [k40 0k4]=m[k0 0k].A^4 = mA \implies \begin{bmatrix} k^4 & 0 \\\ 0 & k^4 \end{bmatrix} = m \begin{bmatrix} -k & 0 \\\ 0 & -k \end{bmatrix}.

Equating elements:
k4=m(k)    m=k4k=k3.k^4 = m(-k) \implies m = \frac{k^4}{-k} = -k^3.

Thus, m=k3m = -k^3.