Solveeit Logo

Question

Mathematics Question on Matrices

If A=[i0 0i],B=[01 10]A = \begin{bmatrix}i&0\\\ 0&-i\end{bmatrix}, B = \begin{bmatrix}0&-1\\\ 1&0\end{bmatrix} and C=[0i i0]C= \begin{bmatrix}0&i\\\ i&0\end{bmatrix} then A2=B2=C2A^{2} = B^{2} =C^{2} is equal to :

A

I2I^2

B

I

C

- I

D

2I

Answer

- I

Explanation

Solution

Let A=[i0 0i],B=[01 10]A = \begin{bmatrix}i&0\\\ 0&-i\end{bmatrix}, B = \begin{bmatrix}0&-1\\\ 1&0\end{bmatrix} and C=[0i i0]C= \begin{bmatrix}0&i\\\ i&0\end{bmatrix} A.A=(i0 0i)(i0 01)A. A= \begin{pmatrix}i&0\\\ 0&-i\end{pmatrix} \begin{pmatrix}i&0\\\ 0&-1\end{pmatrix} =(i20 0i2)=(10 01)=I= \begin{pmatrix}i^{2}&0\\\ 0&i^{2}\end{pmatrix} = \begin{pmatrix}-1&0\\\ 0&-1\end{pmatrix} = - I and B.B=(01 10)(01 10)B.B = \begin{pmatrix}0&-1\\\ 1&0\end{pmatrix}\begin{pmatrix}0&-1\\\ 1&0\end{pmatrix} =(10 01)=I = \begin{pmatrix}-1&0\\\ 0&-1\end{pmatrix} = -I C.C=(0i i0)(0i i0)=(i20 0i2)=IC.C = \begin{pmatrix}0&i\\\ i&0\end{pmatrix}\begin{pmatrix}0&i\\\ i&0\end{pmatrix} = \begin{pmatrix}i^{2}&0\\\ 0&i^{2}\end{pmatrix} = -I Hence, A2=B2=C2=IA^{2} = B^{2} = C^{2} = - I