Solveeit Logo

Question

Mathematics Question on Determinants

If A=[etetcostetsint etetcostetsintetsint+etcost et2etsint2etcost]A = \begin{bmatrix}e^{t}&e^{t} \cos t&e^{-t}\sin t\\\ e^{t}&-e^{t} \cos t -e^{-t}\sin t&-e^{-t} \sin t+ e^{-t} \cos t\\\ e^{t}&2e^{-t} \sin t&-2e^{-t} \cos t\end{bmatrix} Then AA is -

A

Invertible only if t=π2t = \frac{\pi}{2}

B

not invertible for any tϵRt \epsilon R

C

invertible for all tϵRt \epsilon R

D

invertible only if t=πt = \pi

Answer

invertible for all tϵRt \epsilon R

Explanation

Solution

A=et1costsint 1costsintsint+cost 12sint2cost\left|A\right| = e^{-t} \begin{vmatrix}1&\cos t&\sin t\\\ 1&-\cos t -\sin t&-\sin t + \cos t\\\ 1&2\sin t&-2 \cos t\end{vmatrix}
=et[5cos2t+5sin2t]tR= e^{-t} \left[5 \cos^{2} t + 5\sin^{2 }t\right] \forall t \in R
=5et0tR= 5e^{-t} \ne0 \forall t \in R