Solveeit Logo

Question

Mathematics Question on Determinants

If A=[α2 2α ]A=\begin{bmatrix} {\alpha}&{2} \\\ {2}&{\alpha} \\\ \end{bmatrix} A3=27| A^3|= 27then α\alpha is equal to

A

±1\pm 1

B

±2\pm2

C

±7\pm \sqrt {7}

D

±5\pm \sqrt {5}

Answer

±7\pm \sqrt {7}

Explanation

Solution

We have,
A=[α2\2α]A=\begin{bmatrix}\alpha & 2 \\\2 & \alpha\end{bmatrix}
A=α2 2α=α24\Rightarrow |A| =\begin{vmatrix}\alpha & 2 \\\ 2 & \alpha \end{vmatrix}=\alpha^{2}-4
Now, A3=27\left|A^{3}\right|=27
A3=27\Rightarrow |A|^{3}=27
An=An]|A^{n}|=|A|^{n}]
(α24)3=27\Rightarrow \left(\alpha^{2}-4\right)^{3}=27
[A=α24][\because |A|=\alpha^{2}-4 ]
α24=3\Rightarrow \alpha^{2}-4=3
α2=7\Rightarrow \alpha^{2}=7
α=±7\Rightarrow \alpha=\pm \sqrt{7}