Solveeit Logo

Question

Mathematics Question on Matrices

If A=[α0 11]A = \begin {bmatrix} \alpha & 0 \\\ 1 & 1 \end {bmatrix} and B=[10 51]B= \begin {bmatrix} 1 & 0 \\\ 5 & 1 \end {bmatrix} then value of α\alpha for which A2=BA^2=B is

A

1

B

2

C

4

D

no real values

Answer

no real values

Explanation

Solution

Given, A =A = [α0 11]\begin {bmatrix} \alpha & 0 \\\ 1 & 1 \end {bmatrix} and B= [10 51]\begin {bmatrix} 1 & 0 \\\ 5 & 1 \end {bmatrix}
  A2[α0 11][α0 11]=[α20 α+11]\Rightarrow \ \ A^2\begin {bmatrix} \alpha & 0 \\\ 1 & 1 \end {bmatrix} \begin {bmatrix} \alpha & 0 \\\ 1 & 1 \end {bmatrix} = \begin {bmatrix} \alpha^2 & 0 \\\ \alpha+1 & 1 \end {bmatrix}
Also, given, A2^2=B
  [α20 α+11]=[10 51]\Rightarrow \ \ \begin {bmatrix} \alpha^2 & 0 \\\ \alpha+1 & 1 \end {bmatrix} = \begin {bmatrix} 1 & 0 \\\ 5 & 1 \end {bmatrix}
  α2=1 and α+1=5\Rightarrow \ \ \alpha^2=1 \ and \ \alpha+1=5
Which is not possible at the same time.
\therefore No real values of a exists.