Solveeit Logo

Question

Mathematics Question on Matrices

If A=[ab ba]A = \begin{bmatrix}a&b\\\ b&a\end{bmatrix} and A2[αβ βα]A^{2}\begin{bmatrix}\alpha&\beta \\\ \beta&\alpha\end{bmatrix}, then

A

α=2ab,β=a2+b2\alpha = 2ab , \beta = a^2 + b^2

B

α=a2+b2,β=ab\alpha = a^2 + b^2 , \beta = ab

C

α=a2+b2,β=2ab\alpha = a^2 + b^2 , \beta = 2ab

D

α=a2+b2,β=a2b2\alpha = a^2 + b^2 , \beta = a^2 - b^2

Answer

α=a2+b2,β=2ab\alpha = a^2 + b^2 , \beta = 2ab

Explanation

Solution

A2[αβ βα]A^{2}\begin{bmatrix}\alpha&\beta \\\ \beta&\alpha\end{bmatrix} [αβ βα]=[ab ba][ab ba]\Rightarrow\begin{bmatrix}\alpha&\beta\\\ \beta&\alpha\end{bmatrix} = \begin{bmatrix}a&b\\\ b&a\end{bmatrix}\begin{bmatrix}a&b\\\ b&a\end{bmatrix} [αβ βα]=[a2+b22ab 2aba2+b2]\Rightarrow \begin{bmatrix}\alpha&\beta\\\ \beta&\alpha\end{bmatrix} = \begin{bmatrix}a^{2} +b^{2}&2ab\\\ 2ab&a^{2}+b^{2}\end{bmatrix} α=a2+b2 \Rightarrow \alpha = a^{2}+b^{2} and 2ab=β 2ab = \beta