Solveeit Logo

Question

Mathematics Question on Determinants

If A=[5ab 32]A = \begin{bmatrix}5a &-b\\\ 3&2\end{bmatrix} and AA adj AA = AATAA^T , then 5a+b5a + b is equal to :

A

-1

B

5

C

4

D

13

Answer

5

Explanation

Solution

A=[5ab 32]A = \begin{bmatrix}5a&-b\\\ 3&2\end{bmatrix}
A.adj A=A.ATA.adj \ A =A.A^{T}
[5ab 32][2b 35a]=[5ab 32][5a3 b2]\begin{bmatrix}5a&-b\\\ 3&2\end{bmatrix} \begin{bmatrix}2&b\\\ -3&5a\end{bmatrix}= \begin{bmatrix}5a&-b\\\ 3&2\end{bmatrix}\begin{bmatrix}5a&3\\\ -b&2\end{bmatrix}
[10a+3b0 010a+3b]=[25a2+b215a2b 15a2b13]\begin{bmatrix}10a+3b&0\\\ 0&10a+3b\end{bmatrix} = \begin{bmatrix}25a^{2}+b^{2}&15a-2b\\\ 15a-2b&13\end{bmatrix}
Equate, 10a+3b=25a2+b210 a + 3b = 25 a^2 + b^2
& 10a+3b=1310a + 3b = 13
& 15a2b=015a - 2b = 0
a2=b15=k(let)\frac{a}{2} = \frac{b}{15} = k (let)
Solving a=25,b=3a = \frac{2}{5} , b = 3
So, 5a+b=5×25+3=55a + b = 5 \times \frac{2}{5} + 3 = 5