Solveeit Logo

Question

Mathematics Question on Matrices

If A=[51 20]A = \begin{bmatrix} 5 & 1 \\\ -2 & 0 \end{bmatrix} and BT=[110 21]B^T = \begin{bmatrix} 1 & 10 \\\ -2 & -1 \end{bmatrix}, then the matrix ABAB is:

A

[110 10]\begin{bmatrix} 1 & 10 \\\ -1 & 0 \end{bmatrix}

B

[1511 24]\begin{bmatrix} 15 & -11 \\\ -2 & 4 \end{bmatrix}

C

[349 220]\begin{bmatrix} 3 & 49 \\\ -2 & -20 \end{bmatrix}

D

[19 220]\begin{bmatrix} 1 & 9 \\\ -2 & -20 \end{bmatrix}

Answer

[1511 24]\begin{bmatrix} 15 & -11 \\\ -2 & 4 \end{bmatrix}

Explanation

Solution

First, compute BB by transposing BTB^T:

B=[12 101].B = \begin{bmatrix} 1 & -2 \\\ 10 & -1 \end{bmatrix}.

Now compute ABAB using matrix multiplication:

AB=[51 20][12 101].AB = \begin{bmatrix} 5 & 1 \\\ -2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\\ 10 & -1 \end{bmatrix}.

Perform the row-column multiplication:

First row:

[51][1 10]=(5)(1)+(1)(10)=5+10=15,\begin{bmatrix} 5 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\\ 10 \end{bmatrix} = (5)(1) + (1)(10) = 5 + 10 = 15,

First row:

[51][2 1]=(5)(2)+(1)(1)=101=11.\begin{bmatrix} 5 & 1 \end{bmatrix} \cdot \begin{bmatrix} -2 \\\ -1 \end{bmatrix} = (5)(-2) + (1)(-1) = -10 - 1 = -11.

Second row:

[20][1 10]=(2)(1)+(0)(10)=2,\begin{bmatrix} -2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\\ 10 \end{bmatrix} = (-2)(1) + (0)(10) = -2,

Second row:

[20][2 1]=(2)(2)+(0)(1)=4.\begin{bmatrix} -2 & 0 \end{bmatrix} \cdot \begin{bmatrix} -2 \\\ -1 \end{bmatrix} = (-2)(-2) + (0)(-1) = 4.

Thus, the resulting matrix is:

AB=[1511 24].AB = \begin{bmatrix} 15 & -11 \\\ -2 & 4 \end{bmatrix}.

Hence, the correct answer is:

(2)[1511 24].\text{(2)} \begin{bmatrix} 15 & -11 \\\ -2 & 4 \end{bmatrix}.