Solveeit Logo

Question

Mathematics Question on Determinants

If A=[35 20 ]A=\begin{bmatrix} {3}&{5}\\\ {2}&{0}\\\ \end{bmatrix} and BB = [117 010 ]\begin{bmatrix} {1}&{17}\\\ {0}&{-10}\\\ \end{bmatrix} then AB|AB| is equal to

A

80

B

100

C

-110

D

92

Answer

100

Explanation

Solution

A=[35 20]A=\begin{bmatrix}3 & 5 \\\ 2 & 0\end{bmatrix} and B=[117 010]B=\begin{bmatrix}1 & 17 \\\ 0 & -10\end{bmatrix} AB=[35 20][117 010]\therefore \, A B=\begin{bmatrix}3 & 5 \\\ 2 & 0\end{bmatrix}\begin{bmatrix}1 & 17 \\\ 0 & -10\end{bmatrix} =[3+05150 2+0340]=[31 234]=\begin{bmatrix}3+0 & 51-50 \\\ 2+0 & 34-0\end{bmatrix}=\begin{bmatrix}3 & 1 \\\ 2 & 34\end{bmatrix} AB=[11 234] \Rightarrow \, |A B| =\begin{bmatrix}1 & 1 \\\ 2 & 34\end{bmatrix} =1022=102-2 =100=100