Solveeit Logo

Question

Mathematics Question on Applications of Determinants and Matrices

If A=[35\[0.3em]20\[0.3em]]A =\begin{bmatrix} 3& 5 \\\[0.3em] 2 & 0 \\\[0.3em] \end{bmatrix} and [117\[0.3em]010\[0.3em]], \begin{bmatrix} 1& 17 \\\[0.3em] 0 & -10 \\\[0.3em]\end{bmatrix}, then AB|AB| is equal t

A

80

B

100

C

-110

D

92

Answer

100

Explanation

Solution

A=[35 20] A = \begin{bmatrix} 3& 5 \\\ 2 & 0 \end{bmatrix} and B=[117 010], B=\begin{bmatrix} 1& 17 \\\ 0 & -10 \end{bmatrix},
AB=[35 20 ][117 010 ],[3+05150 2+0340]=[31 234],\therefore AB= \begin{bmatrix} 3& 5 \\\ 2 & 0 \\\ \end{bmatrix} \, \begin{bmatrix} 1& 17 \\\ 0 & -10 \\\ \end{bmatrix}, \begin{bmatrix} 3+0& 51-50 \\\ 2+0 & 34-0 \end{bmatrix} = \begin{bmatrix} 3& 1 \\\ 2 & 34 \end{bmatrix},
AB=11 234,\Rightarrow |AB|= \begin{vmatrix} 1& 1 \\\ 2 & 34 \end{vmatrix},
=1022=102-2
=100=100