Question
Mathematics Question on Matrices
If A'= \begin{bmatrix} 3 & 4 \\\ -1 & 2 \\\ 0 &1 \end{bmatrix}$$\begin{bmatrix} -1 & 2 & 1 \\\ 1 &2 & 3\end{bmatrix} , then verify that
(i) (A+B)′=A′+B′
(ii) (A−B)′=A′−B′
Answer
(i) It is known that A=(A')'
Therefore, we have:
A= [3 4−1201]
B'= −1 2 1123
A+B = [3 4−1201] + [−1 12213]= [2 51414]
∴(A+B)′= 2 1 1544
A′+B′= 3 −1 0421+ −1 2 1123= 2 1 1544
Thus, we verified that:(A+B)'=A'+B'
(ii) A−B= [3 4−1201]- [−1 12213] = [4 3−30−1−2]
so(A−B)′ = −4 −3 −130−2
A'-B'= 3 −1 0421- −1 2 1123= −4 −3 −130−2
Hence we verified that: (A−B)′=A′−B′