Solveeit Logo

Question

Mathematics Question on Matrices

If A'= \begin{bmatrix} 3 & 4 \\\ -1 & 2 \\\ 0 &1 \end{bmatrix}$$\begin{bmatrix} -1 & 2 & 1 \\\ 1 &2 & 3\end{bmatrix} , then verify that
(i) (A+B)=A+B(A+B)'=A'+B'
(ii) (AB)=AB(A-B)'=A'-B'

Answer

(i) It is known that A=(A')'
Therefore, we have:
A= [310 421]\begin{bmatrix} 3 & -1 & 0 \\\ 4 & 2 & 1 \end{bmatrix}

B'= [11 22 13]\begin{bmatrix} -1 & 1 \\\ 2 & 2 \\\ 1 &3 \end{bmatrix}

A+BA+B = [310 421]\begin{bmatrix} 3 & -1 & 0 \\\ 4 & 2 & 1 \end{bmatrix} + [121 123]\begin{bmatrix} -1 & 2 & 1 \\\ 1 &2 & 3\end{bmatrix}= [211 544]\begin{bmatrix} 2 & 1 & 1 \\\ 5 & 4 & 4 \end{bmatrix}

(A+B)=\therefore (A+B)'= [25 14 14]\begin{bmatrix} 2 & 5 \\\ 1 & 4 \\\ 1 &4 \end{bmatrix}

A+B=A'+B'= [34 12 01]\begin{bmatrix} 3 & 4 \\\ -1 & 2 \\\ 0 &1 \end{bmatrix}+ [11 22 13]\begin{bmatrix} -1 & 1 \\\ 2 & 2 \\\ 1 &3 \end{bmatrix}= [25 14 14]\begin{bmatrix} 2 & 5 \\\ 1 & 4 \\\ 1 &4 \end{bmatrix}

Thus, we verified that:(A+B)'=A'+B'

(ii) ABA-B= [310 421]\begin{bmatrix} 3 & -1 & 0 \\\ 4 & 2 & 1 \end{bmatrix}- [121 123]\begin{bmatrix} -1 & 2 & 1 \\\ 1 &2 & 3\end{bmatrix} = [431 302]\begin{bmatrix} 4 & -3 & -1 \\\ 3 &0 & -2\end{bmatrix}

so(AB) (A-B)' = [43 30 12]\begin{bmatrix} -4 & 3 \\\ -3 & 0 \\\ -1 &-2 \end{bmatrix}

A'-B'= [34 12 01]\begin{bmatrix} 3 & 4 \\\ -1 & 2 \\\ 0 &1 \end{bmatrix}- [11 22 13]\begin{bmatrix} -1 & 1 \\\ 2 & 2 \\\ 1 &3 \end{bmatrix}= [43 30 12]\begin{bmatrix} -4 & 3 \\\ -3 & 0 \\\ -1 &-2 \end{bmatrix}

Hence we verified that: (AB)=AB(A-B)'=A'-B'