Solveeit Logo

Question

Mathematics Question on Matrices

If A=[34\11]A=\begin{bmatrix}3&-4\\\1&-1\end{bmatrix},then prove An=[1+2n4n n12n]A_n=\begin{bmatrix}1+2n& -4n\\\ n& 1-2n\end{bmatrix}where n is any positive integer

Answer

It is given that A=[34\11]A=\begin{bmatrix}3&-4\\\1&-1\end{bmatrix}
To prove:P(n):An=[1+2n4n n12n]nNP(n):A^n=\begin{bmatrix}1+2n& -4n\\\ n& 1-2n\end{bmatrix}n\in N
We shall prove the result by using the principle of mathematical induction.
For n = 1, we have:
P(1)=[1+2(1)4(1) 112(1)]P(1)=\begin{bmatrix}1+2(1)& -4(1)\\\ 1& 1-2(1)\end{bmatrix}
A=[34\11]A=\begin{bmatrix}3&-4\\\1&-1\end{bmatrix}
Therefore, the result is true for n = 1.
Let the result be true for n = k.
That is,
P(k):Ak=[1+2k4k k12k]nNP(k):A^k=\begin{bmatrix}1+2k& -4k\\\ k& 1-2k\end{bmatrix}n\in N
Now, we prove that the result is true for n = k + 1.
Consider
Ak+1=Ak.AA^{k+1}=A^k.A
[1+2k4k k12k][34\11]\begin{bmatrix}1+2k& -4k\\\ k& 1-2k\end{bmatrix}\begin{bmatrix}3&-4\\\1&-1\end{bmatrix}
=[3+6k4k48k+4k 3k+12k4k1+2k]=\begin{bmatrix}3+6k-4k& -4-8k+4k\\\ 3k+1-2k& -4k-1+2k\end{bmatrix}
=[3+2k44k 1+k12k]=\begin{bmatrix}3+2k& -4-4k\\\ 1+k& -1-2k\end{bmatrix}
=[1+2(k+1)4(k+1) (k+1)12(k+1)]= \begin{bmatrix}1+2(k+1)& -4(k+1)\\\ (k+1)& 1-2(k+1)\end{bmatrix}
Therefore, the result is true for n=k+1n = k + 1.
Thus, by the principle of mathematical induction, we have:An=[1+2n4n n12n]nNA^n=\begin{bmatrix}1+2n& -4n\\\ n& 1-2n\end{bmatrix}n\in N