Solveeit Logo

Question

Mathematics Question on Matrices

if A=[34 11]A = \begin{bmatrix}3&-4\\\ 1&-1\end{bmatrix} is the sum of a symmetric matrix BB and a skew-symmetric matrix CC, then CC is

A

[152 520]\begin{bmatrix}1&-\frac{5}{2}\\\ \frac{5}{2}&0\end{bmatrix}

B

[152 521]\begin{bmatrix}1&-\frac{5}{2}\\\ \frac{5}{2}&1\end{bmatrix}

C

[052 520]\begin{bmatrix}0&-\frac{5}{2}\\\ \frac{5}{2}&0\end{bmatrix}

D

[032 521]\begin{bmatrix}0&-\frac{3}{2}\\\ \frac{5}{2}&1\end{bmatrix}

Answer

[052 520]\begin{bmatrix}0&-\frac{5}{2}\\\ \frac{5}{2}&0\end{bmatrix}

Explanation

Solution

A=[34 11]A = \begin{bmatrix}3&-4\\\ 1&-1\end{bmatrix} A=(A+A2)+(AA2)=B+CA= \left(\frac{A + A'}{2}\right)+\left(\frac{A-A'}{2}\right) = B + C [where BB and CC are symmetric and skew-symmetric matrices respectively] Now, C = \frac{A - A'}{2} = \frac{1}{2 } \left\\{\begin{bmatrix}3&-4\\\ 1&-1\end{bmatrix} - \begin{bmatrix}3&1\\\ -4&-1\end{bmatrix}\right\\} =12[05 50]=[052 520] = \frac{1}{2}\begin{bmatrix}0&-5\\\ 5&0\end{bmatrix} = \begin{bmatrix}0&-\frac{5}{2}\\\ \frac{5}{2}&0\end{bmatrix}